Hydronic Systems Balance

Balancing Is Misunderstood

- Balancing is application of fundamental hydronic system math
 - "Balance"

Honal Purposat ank

This attria may

- Adjustment of friction loss location
- Adjustment of pump to requirements
 - By definition: Achieve ±10% How rate or better for required heat transfer of 97.5%
- Balancing cannot make up for poor design and component choices

and 1.6 and a second se

Evaluation Method: System Curve Math
 – System and Component Row Coefficients

$$q + C_v \sqrt{! P}$$
 or $C_v + \frac{q}{\sqrt{! P}}$

- Components in series

$$\frac{1}{C_{VE}^{2}} + \frac{1}{C_{V1}^{2}} \stackrel{(3)}{=} \frac{1}{C_{V2}^{2}} \stackrel{(3)}{=} \frac{1}{C_{V3}^{2}} \stackrel{(3)}{=} \frac{1}{C_{Vn}^{2}}$$

– Paths in parallel

$$\mathsf{C}_{\mathsf{VE}} + \mathsf{C}_{\mathsf{V1}} \cong \mathsf{C}_{\mathsf{V2}} \cong \mathsf{C}_{\mathsf{V3}} \cong \ldots \cong \mathsf{C}_{\mathsf{Vn}}$$

- Evaluation Method: System Curve Math
 - Pump & System Curve & Spreadsheet

- Evaluation Method: System Curve Math
 - Pump & System Curve & Spreadsheet

Pressure regulated control valves

Static Balance

- Closely associated with throttling valves
 - Position ! C_v ! How Calculation
 - Accuracy of differential sensor needs to adapt as valve closes
- "Proportional" balance
 - Pump undersized, all valves receive percentage of flow

Branch Riser Pressure Drop Ratio	Percent Design Flow All Circuits
4:1	95%
2:1	90%
1:1 and less	80% and less

Note: Based on constant speed pumps

Riser

Example:

40 Ft Head loss in branch

2:1 Ratio equals 20 feet allowed in supply and return piping, or 10' per riser.

Circuits can receive 90% design flow regardless of what other valves do in system

Friction Loss Charts

STANDARDS OF THE HYDRAULIC INSTITUTE

TABLE ET-1

SCHEDULE 40 STEEL PIPE-FRICTION LOSS FOR WATER IN FEET PER 100 FEET

- Published by ASHRAE & Hydraulic Institute
- D/W Eqn.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	U. S. Gallona	4	In.	⅔ In.	½ In.	³ ⁄4 In.	U. S. Galions	l In.	1¼ In.	1½ In.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	per Minute	V Ft /See	h _f Friot.	V hy Ft /Sec Friel	V h _f Ft /See Friet.	V h _f Ft/Sec Frist.	Minute	V h <i>j</i> Ft /Sec Friet.	V h/ Ft /See Friet.	V h/ Ft/Ses Friet.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.8 1.0 1.2 1.4	2.47 3.08 3.70 4.32 4.09	12.7 19.1 26.7 35.3 45 9	2.35 7.8 7.8	5	· · · · · · · · · · · · · · · · · · ·	6 8 10 12 14	2.23 2.68 2.97 4.54 3.71 6.86 4.45 9.62 5.20 12.8	2.57 2.48 3 00 3 28	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	120 140 160 180 200	11.5 13.4 15.3	24.7 33.2 43.0	8.04 10.0 9.38 13.1 10.7 17.0 12.1 21.2 13.4 26.5	5.21 3.37 6.08 4.51 6.94 5.81 7.81 7.21 8.68 8.99	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 600 700 800 900 1000	9.62 5.88 11.2 7.93 12.8 10.22 14.4 12.9 16.0 15.8	6.66 2.34 7.77 3.15 8.88 4.08 9.99 5.05 11.1 6.17	3.85 0.597 4.49 0.797 5.13 1.02 5.77 1.27 6.41 1.56
$\begin{smallmatrix} 350 \\ 400 \\ 450 \\ 50$	220 240 260 280 300			14.7 32.1 16.1 38.	$\begin{array}{c c c} 9.55 & 10.7 \\ 10.4 & 12.6 \\ \dots & 11.3 & 14.7 \\ \dots & 12.2 & 16.9 \\ \dots & 13.0 & 19.2 \end{array}$	5.54 2.72 6.05 3.21 6.55 3.74 7.06 4.30 7.56 4.89	1100 1200 1300 1400 1500	· · · · · · · · · · · · · · · · · · ·	12.2 7.41 13.3 8.76 14.4 10.2 15.5 11.8	7.05 1.87 7.70 2.20 8.34 2.56 8.98 2.95 9.62 3.37
	850 400 450 500 550 600				15.2 26.1	8.82 6.55 10.10 8.47 11.4 10.65 12.6 13.0 13.9 15.7 15.1 18.6	1600 1700 1800 1900 2000 2100 2200	A	dd 15	%! ^{3.82} 4.79 5.31 5.86

NOTE: The above table shows average values of pipe friction for new pipe. For commercial installations it is recommended bat 15% be added to the above values. No allowance for aging of pipe is included.

Calculate Head Loss & Flow Requirement

SEGMENT	А	В	С	1-2	2-3	3-4-6	3-5-6	6-7	2-8	8-10-11	8-9-11	11-7	7-12	D	Е	F	
Flow	240	160	80	80	40	20	20	40	40	20	20	40	80	80	160	240	
Size	4"	3"	2.5"	2.5	1.5	1.25	1.25	1.5	1.5	1.25	1.25	1.5	2.5	2.5"	3"	4"	
Length	100'	20'	20'	30	30	60	60	30	30	60	60	30	30	20'	20'	100'	
H _F Rate	3	5.5	4.5	4.5	12.5	9	9	12.5	12.5	9	9	12.5	4.5	4.5	5.5	3	
Friction Loss	3	1.1	0.9	1.35	3.75	5.4	5.4	3.75	3.75	5.4	5.4	3.75	1.35	0.9	1.1	3	
Fittings					2	2	2	2	2	2	2	2	2	2	2	2	
Service Valves	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	
Coil						17	17			17	17						
Control Valve																	
Balance Valve																	
Source																30	
Total	5	3.1	2.9	3.35	7.75	26.4	26.4	7.75	7.75	26.4	26.4	7.75	5.35	4.9	5.1	37	
																	PATH
																	TOTAL
A-1-2-3-4-6-7-12-F	5			3.35	7.75	26.4		7.75					5.35			37	92.6
A-1-2-3-5-6-7-12-F	5			3.35	7.75		26.4	7.75					5.35			37	92.6
A-1-2-8-10-11-7-12-F	5			3.35					7.75	26.4		7.75	5.35			37	92.6
A-1-2-8-9-11-7-12-F	5			3.35					7.75		26.4	7.75	5.35			37	92.6
A-B-1-2-3-4-6-7-12-E-F	5	3.1		3.35	7.75	26.4		7.75					5.35		5.1	37	100.8
A-B-1-2-3-5-6-7-12-E-F	5	3.1		3.35	7.75		26.4	7.75					5.35		5.1	37	100.8
A-B-1-2-8-10-11-7-12-E-F	5	3.1		3.35					7.75	26.4		7.75	5.35		5.1	37	100.8
A-B-1-2-8-9-11-7-12-E-F	5	3.1		3.35					7.75		26.4	7.75	5.35		5.1	37	100.8
A-B-C-1-2-3-4-6-7-12-D-E-F	5	3.1	2.9	3.35	7.75	26.4		7.75					5.35	4.9	5.1	37	108.6
A-B-C-1-2-3-5-6-7-12-D-E-F	5	3.1	2.9	3.35	7.75		26.4	7.75					5.35	4.9	5.1	37	108.6
A-B-C-1-2-8-10-11-7-12-D-E-F	5	3.1	2.9	3.35					7.75	26.4		7.75	5.35	4.9	5.1	37	108.6
A-B-C-1-2-8-9-11-7-12-D-E-F	5	3.1	2.9	3.35					7.75		26.4	7.75	5.35	4.9	5.1	37	108.6

Automated Control

Engineering Practice: Valve Authority

- Control relies on predictable linear control
 - Coil and valve look like a straight line
 - The weather changes, we add or subtract flow proportionally to the worst case day

Conventional Modulating Valves

- Need stable system pressure to properly control
- Require large pressure drops for linear control
 - "Valve Authority" means the valve is selected to be ½ pump pressure (head)
- Fine tuning in field; "Balancing"
- Extra design calculations

Traditional Valve Application

SEGMENT	А	В	С	1-2	2-3	3-4-6	3-5-6	6-7	2-8	8-10-11	8-9-11	11-7	7-12	D	Е	F	
Flow	240	160	80	80	40	20	20	40	40	20	20	40	80	80	160	240	
Size	4"	3"	2.5"	2.5	2	1.5	1.5	2	2	1.5	1.5	2	2.5	2.5"	3"	4"	
Length	100'	20'	20'	30	30	60	60	30	30	60	60	30	30	20'	20'	100'	
H _F Rate	3	5.5	4.5	4.5	3.25	3.75	3.75	3.25	3.25	3.75	3.75	3.25	4.5	4.5	5.5	3	
Friction Loss	3	1.1	0.9	1.35	0.98	2.25	2.25	0.98	0.98	2.25	2.25	0.98	1.35	0.9	1.1	3	
Fittings																	
Service Valves																	
Coil						17	17			17	17						
Control Valve						43.7	43.7			43.667	43.67						
Balance Valve																	
Source																30	
Total	3	1.1	0.9	1.35	0.98	62.9	62.9	0.98	0.98	62.917	62.92	0.98	1.35	0.9	1.1	33	
																	PATH TOTAL
A-1-2-3-4-6-7-12-F	3			1.35	0.98	62.9		0.98					1.35			33	103.567
A-1-2-3-5-6-7-12-F	3			1.35	0.98		62.9	0.98					1.35	1		33	103.567
A-1-2-8-10-11-7-12-F	3			1.35					0.98	62.917		0.98	1.35			33	103.567
A-1-2-8-9-11-7-12-F	3			1.35					0.98		62.92	0.98	1.35			33	103.567
A-B-1-2-3-4-6-7-12-E-F	3	1.1		1.35	0.98	62.9		0.98					1.35		1.1	33	105.767
A-B-1-2-3-5-6-7-12-E-F	3	1.1		1.35	0.98		62.9	0.98					1.35		1.1	33	105.767
A-B-1-2-8-10-11-7-12-E-F	3	1.1		1.35					0.98	62.917		0.98	1.35		1.1	33	105.767
A-B-1-2-8-9-11-7-12-E-F	3	1.1		1.35					0.98		62.92	0.98	1.35		1.1	33	105.767
A-B-C-1-2-3-4-6-7-12-D-E-F	3	1.1	0.9	1.35	0.98	62.9		0.98					1.35	0.9	1.1	33	107.567
A-B-C-1-2-3-5-6-7-12-D-E-F	3	1.1	0.9	1.35	0.98		62.9	0.98					1.35	0.9	1.1	33	107.567
A-B-C-1-2-8-10-11-7-12-D-E-F	3	1.1	0.9	1.35					0.98	62.917		0.98	1.35	0.9	1.1	33	107.567
A-B-C-1-2-8-9-11-7-12-D-E-F	3	1.1	0.9	1.35					0.98		62.92	0.98	1.35	0.9	1.1	33	107.567

Control Valve

- We reduced head loss to 66'
- We want 50% Authority, so size valve for _____
 66' (28.6 PSI)

q + C_v
$$\sqrt{! P}$$

20 GPM + C_v $\sqrt{\frac{66}{2.31}}$
 $\frac{20}{\sqrt{\frac{66}{2.31}}}$ + C_v + 3.74

Control Valve Selection

Valve Authority

- Components have constant flow coefficient
- Valve coefficient is variable
- Calculate equivalent coefficient at valve stroke using spreadsheet

Balance?

- In this case "balance" would adjust the coil balance valves in Branches 2 & 3 to account for riser loss of about 2' and 4'
- Large systems become complicated adjustments
 - Broken up into logical groups
 - System changes often require major re-balance
- Example: Look at pump and system curve intersection points

1" Control Valve

Static Balance; "Riser Balance"

Why the Emphasis on Control Valve?

- 80% of operational cooling uses less than 20% of design flow
- 97% of operational hours covered by 50% design flow
- 50% flow can be 12.5% design horsepower

Optimizing Hydronic System Energy Efficiency

! Flow + ∛! BHP

- Means applying variable speed drives to save maximum energy
 - Small changes in flow mean big savings in pump horsepower
- Hydronic system and controls must be designed to take advantage of potential savings
- Many variable speed pump systems don't achieve their predicted performance

Building Code

- IECC 503.4.3.4
- Hydronic Systems ! 300,000 Btu/Hr. in design output capacity supplying heated or chilled water to have special controls
 - Temperature to be capable of being reset by 35% of the design supply to return water temperature difference
 - Capable of reducing system pump flow by 50% of design flow utilizing adjustable speed drives on pumps where 1/3 of total horsepower is automatically turned off or modulated

Variable Speed Pumping Offers Tremendous Energy Saving Potential

Variable Speed Pump "Problems"

- Temperature control worse or unstable
- How to balance a VS pump system
 - ASHRAE techies have debated subject for years
- Diversity: Short flow
- Paradigm change; System curve & commissioning
 - Systems don't seem to follow "system curve"

– Work in "area" of operation

 Variable speed systems don't seem to achieve desired savings

Example Modification

- Convert to three floors
- Group valves into one

System Requires 240 GPM Chiller Rated @ 200 Tons, 400 GPM Pump Specified 400 GPM @ 70 Feet

Branch Pipe, Valves, Coil and TC Valve specified at 67' Loss, via set point specified for variable speed pump system.

Branch 1 required balance: Maximum Pump speed set to match flow and head required for branch.

Branch 2 & 3 required balance: Balancing valves adjusted to make up for distribution head loss due to location. Note: Preferable application of dynamic balance method

System Requires 240 GPM Pump Specified 240 GPM @ 110 Feet

TC Valve specified at 44' loss, via set point specified for variable speed pump system.

Branch 1 required balance: Maximum Pump speed set to match flow and head required for valve.

Branch 2 & 3 required balance: Balancing valves adjusted to make up for distribution head loss due to location. Note: Branch 1 coil loss now added to distribution system piping due to control sensor location.

Solutions: Automatic Flow Limiting

- How limiting valves fix variable speed control area problems
- How limiting values do not proportionally balance
 - Diversity selection less than coil block load leads to issues
- Control valve still has fundamental controller gain problem under variable speed

Dynamic Balance; Pre-adjusted Branch

Adding to Problem

- Proportional control dynamic is changed in conventional modulating valves
- Controller begins to hunt

Two Valves Integrated In One Body

- The advanced design ensures stable pressure on temperature control valve at all times
- TC Valve always has 100% authority
 - Other designs do not

Conventional Control Valves Require

- Iterative design calculation
 - First pass; determine piping losses
 - Second pass; size valve, determine pressure drops and balance pipe sizes and pressure drops
- Stable Differential Pressure
- Balancing to tune valve to system
- Need extra flow? re-size or increase pressure

Regulated Valve Provides

- Known pressure drop
 - Calculate pipe and pump size once
 - Less required ! Pfor control set point
- Consistent flow characteristic
- Valve inherently balances system and can proportion flow for "diverse" flow applications
- Need extra flow? adjust valve setting in field

Dynamic Balance; PICV Controlled Pressure & ATC

PICV Helps Move Pressure SP Down

"Case Against Balancing Valves" ASHRAE Journal July 2009

System Requires 180 Tons, 360 GPM Chiller Rated @ 200 Tons, 400 GPM Pump Specified 400 GPM @ 70 Feet

Branch Pipe, Valves, Coil and TC Valve specified at 10' Loss, via set point specified for variable speed pump system.

Branch 1 required balance: Bypass port must be balanced to pressure drop of coil. Either (A) Pump Impeller trimmed to match required head, 58.6 Feet, or (B) Pump speed fixed at 91.5% to match required speed for oversized pump

Branch 2 & 3 required balance: Bypass port must be balanced to pressure drop of coil. Balancing valves adjusted to make up for distribution head loss due to location.

Impact

- Article doesn't really point out impacts well
 - 3 Way Unbalanced and oversized pump

58000 KWH \$4423

- 3 Way Balanced

42000 \$3224

- 2 Way Valve with Authority Issues & Oversized Pump 24,500 KWH \$1872
- 2 Way High Authority (PICV) No Pump Adjustment
 12900 KWH \$986
- 2 Way PICV with Pump Adjusted
 8500 KWH \$647

Balance Counts

- ALL systems that move fluid probably benefit from proper adjustment
- In hydronics PIC Valves help maintain
 - Proper Temperature Control (No Hunting)
 - Reduced Pump Differential Set Point
 - Overcome with controllers "big" system issues like diversity
- Problems don't necessarily show themselves in "Commissioning"
 - Reconsider protocols with emphasis on control signals
 - Pump Curves & System Curves