Energy Modeling to Meet LEED™ Requirements

ASHRAE is a Registered Provider with the American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Learning Objectives

- Understand how to use modeling software to achieve LEED points
- Understand the methods and requirements of ASHRAE 90.1-2004 Energy Cost Budget and Performance Rating program
- Recognize and avoid the common pitfalls of energy modeling

Today's Topics

- LEED & 90.1-2004 Energy Analysis
 - Energy Cost Budget Method (ECB)
 - Performance Rating Method (PRM)
- Software Requirements
- Modeling Requirements
 - Common Pitfalls Modeling ECB & PRM
- Question & Answer

new construction LEED-NC 2.2

Energy and Atmosphere category

 Prerequisite 2 - Minimum energy performance (EAp2)

Energy Cost Budget Method

Credit 1 - Optimize energy performance (EAc1)

Performance Rating Method

10 Depints Optimize energy performance LEED-NC <u>**2.2**</u>**: EAC1**

Reduce proposed building energy cost for all loads

- Heating
- Cooling
- Lighting (all)
- Auxiliaries (pumps, fans)
- Water heaters

May earn innovation points

 Process energy elevators, plug and other unregulated loads

minimum energy performance LEED-NC <u>2.2</u>: EAc1

Reduction proposed end		
New construction*	LEED points	
10.5%	1	Contract 1
14	2	
17.5	3	
21	4	*For a major
24.5	5	renovation
28	6	proposed
31.5	7	pre-renov
35	8	- to determ
38.5	9	CUST SAVIN
42	10	

For a major renovation, compares proposed design to pre-renovated building to determine energy cost savings

ASHRAE Standard 90.1-2004 Modeling Methods

Energy Cost Budget (ECB) Method

- ♦ ASHRAE Std 90.1, §11
- Demonstrates code compliance
- Compares proposed building to a "budget" building that minimally complies with mandatory + prescriptive requirements

Performance Rating Method (PRM)

- Appendix G
- Modification of ECB Method
- Quantifies
 performance that
 substantially
 exceeds Std 90.1
 requirements

Both ECB & PRM include simulation software requirements

90.1-2004 requirements for Simulation Software

Individually simulated hours

- ECB minimum of 1,400
- PRM minimum of 8,760
- Accounts for hourly load variations

 (occupancy, lighting and equipment power, thermostat setpoints, HVAC operation)
- **Accounts for thermal mass**
- Models at least 10 thermal zones
- Accounts for unloading curves and condenser relief

90.1-2004 requirements for Simulation Software

- Models economizers with integral control
 - ECB airside and waterside
 - PRM airside
- Calculates energy cost via utility rates or exports energy usage data
- Capable of performing design load calculations
- Uses hourly values of climate data, such as temperature and humidity
- Tested with ASHRAE Standard 140 (ECB)

90.1-2004 requirements for Simulation Software

Which ones measure up?

- ◆ DOE 2.x
- ◆ TRACE[™] 700
- EnergyPlus
- BLAST
- ◆ HAP
- Energy-10... among others

Requirements Design Model

Proposed building

- Accurately model design documents
- Include all end-use load components (G)
- Simulate as heated and cooled
- If a system is not designed (e.g., lighting), then match baseline building

- Same number of floors as proposed building
- Conditioned floor area matches that of proposed building

Requirements Space Use Classification

Proposed building

- Usage specified using building type or space type classifications from lighting section
- If mixed-use facility, may use more than one building type

Baseline building

 Same as proposed design

Requirements Schedules

Proposed building

- Include: Occupancy, lighting power, system operation, thermostat setpoints, miscellaneous equipment power
- Schedule alteration exceptions (G):

Daylighting, natural ventilation, demandcontrolled ventilation, service-water heating load reductions

Baseline building

 Include: Same as proposed design

 No daylighting, natural ventilation, demandcontrolled ventilation, service water heating load reductions

Requirements Envelope

Proposed building

- Model architectural drawings or as-built for existing buildings
- Model automated shades or blinds and permanent shading devices

- Same dimensions as proposed design
- Maximum vertical fenestration
 - 50% of wall area (11)
 - 40% of wall area (G)
- Horizontal bands of equal fenestration % on all orientations with no shading devices (G)
- Opaque assemblies match proper 90.1 table
 - Identical heat capacity of proposed design (11)
 - Lightweight assembly (G)
- Rotate model 90°, 180°, 270° ... average four results (G)

Requirements Lighting

Proposed building

- Actual lighting power if designed
- If not designed, use Building Area Method
- Include task, furnituremounted lighting
- Include parking-garage, and facade lighting (G)
- Include automated lighting control (e.g., daylighting)

- Based on same building category, equals maximum allowed in Std 90.1
- Lighting schedules that comply with Std 90.1's control requirements
- No automated lighting control

Requirements Thermal Blocks

Proposed building

- Model thermal zones or blocks
- Model HVAC as designed ...
 If not designed, then identical to baseline
- Model SWH as designed ...
 If not designed, then identical to baseline

- Same as proposed
- Model HVAC to comply with Std 90.1 system requirements
- Same energy source as proposed

Requirements Receptacle & Other Loads

Proposed building

 Receptacle and process loads same as baseline ...
 except as authorized by rating authority

Baseline building

 Other loads, such as motors, must meet minimum Std 90.1 requirements

ECB Baseline System Type

Figure 11.4.3 from ASHRAE Standard 90.1-2001

	System type	Fan control	Cooling	Heating
System 1	VAV w/PFP boxes	VAV	Chilled water	Electric resistance
System 2	VAV w/reheat	VAV	Chilled water	Hot water fossil fuel boiler
System 3	Pkgd rooftop VAV w/PFP boxe	VAV	DX	Electric resistance
System 4	Pkgd rooftop VAV w/reheat	VAV	DX	Hot water fossil fuel boiler
System 5	2-Pipe Fan-Coil	CV	Chilled water	Electric resistance
System 6	Water source heat pump	CV	DX	Electric heat pump & Boiler
System 7	4-Pipe Fan-Coil	CV	Chilled water	Hot water fossil fuel boiler
System 8	Pkgd terminal heat pump	CV	DX	Electric heat pump
System 9	Pkgd rooftop heat pump	CV	DX	Electric heat pump
System 10	Pkgd Terminal Air Conditioner	CV	DX	Hot water fossil fuel boiler
System 11	Pkgd rooftop air conditioner	CV	DX	Fossil fuel furnace

	Baseline HVAC system types					
	Fossil fuel					
	• Fossil/electric					
	hybrid	• Electric				
Building type	 Purchased heat 	and other				
RESIDENTIAL	ΡΤΑΟ	РТНР				
NONRESIDENTIAL	1. All and the second					
Floors: 3 or less	DS7-AC					
Area: < 75,000 ft ²	PSZ-AC	P32-NP				
Floors: 4 or 5	Deckered VAV	Deckered VAV				
Area: < 75,000 ft ²	with reheat	w/PFP boxes				
Floors: 5 or less						
Area: ≥ 75,000 ft ²						
≤ 150,000 ft²						
Floors: 5 or more <u>or</u>	VAV with robost					
Area: > 150,000 ft ²	vav with reneat	boxes				

From ASHRAE Standard 90.1-2004: Table G3.1.1A

Syst	em no.	System type	Fan control	Cooling	Heating
1 PT	ΓΑϹ	Pkgd terminal air conditioner	CV	DX	Hot water fossil fuel boiler
2 P1	ГНР	Pkgd terminal heat pump	CV	DX	Electric heat pump
3 PS	SZ-AC	Pkgd rooftop air conditioner	CV	DX	Fossil fuel furnace
4 PS	SZ-HP	Pkgd rooftop heat pump	CV	DX	Electric heat pump
5 Pk w	kgd VAV /reheat	Pkgd rooftop VAV w/reheat	VAV	DX	Hot water fossil fuel boiler
6 Pk w	kgd VAV /PFP boxes	Pkgd rooftop VAV w/reheat	VAV	DX	Electric resistance
7 V/ w	AV /reheat	Pkgd rooftop VAV w/reheat	VAV	Chilled water	Hot water fossil fuel boiler
8 V/ w,	AV /PFP boxes	VAV w/reheat	VAV	Chilled water	Electric resistance

Baseline system descriptions from ASHRAE Standard 90.1-2004: Table G3.1.1B

Appendix G Performance Rating Method

Percent improvement:

baselineproposedbldg performancebldg performance

baseline bldg performance

Both models include all end-use loads (receptacles, process loads, etc.)

Appendix G Baseline HVAC System

Economizer

- Inclusion based on climate, floor area, and baseline HVAC
- High-limit shutoff
- Fan power is specified
- Building area determines number and size(s) of chillers and boilers

example Single-Story Office

Synopsis:

- 15,000 ft², natural gas heat, St. Louis (climate zone 4A)
- Modeled per Std 90.1-2004, Appendix G
- No glass or insulation changes
- Options from ASHRAE's Advanced Energy Design Guide for Small Office Buildings (based on Std 90.1-1999)

office example Baseline HVAC System

Per Tables G.3.1.1A & 1B in Appendix G, Std 90.1-2004:

System 3 Packaged single-zone air conditioner

- Packaged rooftop air conditioner
- Constant-volume fan control
- Direct-expansion cooling
- Fossil fuel heating

example Office Building Layout

107-ENC OFFICE	L 106-ENCL OFFICE	105- OFF	ENCL	10 OF	4-ENCL FICE	LOBBY	103-EN OFFICE	CL	102-ENCL OFFICE	1 0	01-ENCL FFICE
OPEN OFFICE WEST	OPEN OFFICE INTERIOF WEST	Ł	CONF ROOM WEST	1	CONF ROOM EAST	RESTROOM RESTROOM	BREAK ROOM		OPEN OFFICE INTERIOR EAST		OPEN OFFICE EAST
OPEN OFFICE SOUTH WEST	OPEN OFFICE SOUTH							N		OPEN OFFICE SOUTH EAST	
plan view							1				
					FENEST	RATION					

elevation view

office example Modeling Energy Options

Option	Baseline design	Proposed design
Lighting	1.0 W/ft² (max office-bldg allowance)	0.9 W/ft ²
Daylighting	None	Cont. Dimmer
Economizer	None required	Comparative enthalpy
Fan modulation	Constant volume	Variable volume
Fan-pressure optimization	Not applicable	Yes
Equipment efficiency	9.5 EER 9.7 IPLV	10.0 EER 10.4 IPLV
Ventilation Based on	ASHRAE Std 62	ASHRAE Std 62 & Ventilation reset

modeling energy options Lighting Power

Reduce the lighting load

- Directly reduces electrical energy consumption
- Indirectly reduces HVAC cooling load

For office example:

 Change 0.9 W/ft² (proposed) to 1.0 W/ft² (baseline)

modeling energy options Daylighting

Use natural lighting

- Reduces electrical energy consumption
- May enhance productivity

For office example:

 Add daylighting to proposed design

office example HVAC System Options

Economizer

- Reduces mechanical cooling load when outdoor air is suitable
- Increases ventilation air for occupants

Variable air volume

- Helps control humidity at part load
- Delivers colder air to the space than constant volume

office example Fan-Pressure Optimization

communicating BAS

fan-pressure optimization Control Logic

dynamic system OA control Ventilation Reset

office example Baseline Model

Building orientation	Annual energy cost
As proposed	\$24,057
90° from proposed	\$25,032
+ 180° from proposed	\$24,072
270° from proposed	\$25,198
Average	\$24,590

office example Energy Cost Comparison

Proposed design = \$17,706 Baseline design = \$24,590

So, proposed design:

100 × bldg performance — bldg performance bldg performance — bldg performance

 $100 \times \frac{24,590 - 17,706}{24,590} = 27.995\%$ improvement

office example EAc1 Points Earned

Reduction of proposed energy cost				
New construction*	LEED-NC 2.2 points			
10.5%	1			
14	2			
17.5	3			
21	4			
24.5	5	Ν		
28	6	S		
31.5	7	in		
35	8	e		
38.5	9			
42	10			

No rounding, so 27.995% improvement is eligible for 5 points

Energy Cost Budget Common Mistakes

Envelope

- Maximum % glass ignored
- Opaque assembly heat capacity not constant
- Roof solar outside shortwave reflectance not set to 0.45 or 0.3

General

 Thermally dissimilar HVAC zones combined into thermal blocks

Energy Cost Budget Common Mistakes

Systems

- Incorrect baseline system selection
- Packaged unit supply fan, condenser fan, compressor energy not properly separated
- IPLV requirement ignored
- SEER input as EER
- Equipment sizing ratio (actual/design) not used to determine baseline equipment capacity
- Fan cycling not modeled
- Fan power limitation ignored or improperly calculated
- Optimum start controls not modeled (>10,000 CFM)
- Static pressure setpoint reset not modeled (VAV fan system power > 5 hp)

Performance Rating Method Common Mistakes

Envelop

- Maximum glass % assumed to be the same as ECB
- Lightweight assembly not used
- Roof solar outside shortwave reflectance not set to 0.3
- Glass not evenly distributed in horizontal bands across all orientations

Performance Rating Method Common Mistakes

Systems

- Incorrect baseline system selection
- Packaged unit supply fan, condenser fan, compressor energy not properly separated
- IPLV requirement ignored
- Unmet load hours exceed 300 hours or proposed model exceeds baseline by more than 50 unmet hours
- Fan cycling not modeled
- Fan power improperly calculated
- Pump power limitations ignored
- 8760 hour simulation not used

What We Covered

- Modeling requirements for LEED-NC Version 2.2 ASHRAE/IESNA Standard 90.1-2004
 - Energy Cost Budget
 - Performance Rating Method
- Office example Reducing building loads also reduces equipment capacity and energy use
- Common mistakes

THANK YOU

This concludes the ASHRAE & AIA Continuing Education Systems Program

Please visit the website www.ashraemadison.org/crc2007

Questions or Comments??

Matt Biesterveld

Trane

608.787.3602

mbiesterveld@trane.com

www.trane.com