Electrification and decarbonization, chiller heater technologies and trends

Prepared for ASHRAE IA 11/02/2023

Dan Gentry – Applications Engineer

- Best Practices / Trends
- Applied heating products
 - Heat Recovery
 - Heat Pump
 - Air source
 - Water source
- Systems
 - Considerations
 - Examples
- Refrigerants
- Incentives

Low temperature hot water

Best Practices

Hot Water Supply Temperature, OADB, Capacity

- When outdoor air is colder, heat pumps lose efficiency, and heating capacity is lower.
- When hot-water supply temperature is reduced, heat pumps gain efficiency and capacity.

Equipment availability based on HW temperature

105-140F supply HW

- Almost any chiller can be used
- Air source or water source
- Scroll, screw, centrifugal

141-165F supply HW

- Fewer options
- No current air source
- Small scroll and screw chillers
- Cascade

Over 165F supply HW

- Limited options
- Small scroll
- Large centrifugal
- Booster
- Cascade

Hot Water Supply Temperature, Outdoor Air and COP

140°F hot water requires 35% more peak power and annual heating energy than 105°F

Four-Pipe Distribution

	Goal	Unit sizing guidance basis
	Heat recovery	Simultaneous heating & cooling
	Full electrification	Peak heating loads
	Significant electrification	Peak heating load minus augmented heating unit capacity (e.g. boilers)
	Keep units loaded	System reliability and simplicity

Electrified systems – heat sources

All operating units loaded to equal percentages

Cooling (tons)	Heating (MBh)
550	2,600
157.5	2,360
392.5	0
	240
	(tons) 550 157.5 392.5

Not optimal

Units on load side of bypass loaded preferentially

	Cooling (tons)	Heating (MBh)
Building Loads	550	2,600
Heat recovery chiller	200	3,000
Cooling chiller	350	0
Heat purchased		0
Heat that must be rejected from HR chiller	0	400

Unit loaded to exactly to satisfy heating load

	Cooling (tons)	Heating (MBh)
Building Loads	550	2,600
Heat recovery chiller	174	2,600
Cooling chiller	376	0
Heat purchased		0
Heat that must be rejected from HR chiller		0

Simple and Reliable

Unit loaded to exactly to satisfy heating load

	Cooling (tons)	Heating (MBh)
Building Loads	550	2,600
Heat recovery chiller	174	2,600
Cooling chiller	376	0
Heat purchased		0
Heat that must be rejected from the HR chiller		0

Simple and Reliable

High temperature hot water
Best Practices

- Today, water sourced equipment
- Mind the delta T
- Pre-heat
- Remember we are moving heat, where is it coming from?

Applied Heating Units

Brief overview of technology

Water-cooled and water-source units

Heating while Cooling

Air-cooled and air-source units

Chiller + Heat Recovery

Heat Pump

Heating or Cooling

Efficiency and GWP Comparison

BaselineLower
GWPUltra-Low
GWP

Industry Choices Offer Options & Trade-offs; New Options Evolving

New Construction to mild retrofit

Low temperature hot water

System 1 Cold Climate Electrification with Backup Heating

Average high and low temperatures in Chicago

Hydronic Central Geothermal with Modular Chiller(s)

NOTE: Not all components are depicted in this diagram

Heat Recovery, Full Electrification

Significant Electrification or Backup Heating

Electrification: Geothermal

Electrification: Thermal Energy Storage

MacCracken, M. "Electrification, Heat Pumps and Thermal Energy Storage, ASHRAE Journal, July 2020,

Solving Decarbonization Challenges with Thermal Batteries Heating and Cooling with Supplemental Charging – when Ample Green Power

Existing Building

High temperature hot water

Cascade

• I want to replace my boiler with a heat pump

Heat Sources Airstreams

Cascade Heat Pump

High Temp Unit- CVHH Based Product

- > 180F Leaving Hot Water Capable
- R514A for very high temp (180F)
- R1233zd(E) for high temp (155F) and high load
- Capacity Range: 22,000 to 35,000 MBH

Low Temp Unit- Any WC Chiller

- Standard chiller such as CVHH
- Configuration flexibility
 - HTRC unit for uneven loading
- Can be an existing unit in your facility

Trane Cascade Advantage

- Better Turndown (Down to 25% of Full Load or better)
- Operates under uneven cooling and heating loads
- High reliability and standard parts
- > System design flexibility
- > Best cooling efficiency
- Easy integration with BAS
- Pairing with an existing cooling chiller
- High Temp unit can be used for chilled water unit in summer
- > Low GWP
 - GWP = 1 for R1233zd(E)
 - GWP= 2 for R514A

Low Temp Unit

Into the future

- High temp
- High lift
- Low ambient

Small Building Application VRF with DOAS or ERV

- Cold climate capability (≥ -22°F)
 - Operation during defrost limits impact to occupant comfort
 - Auxiliary fuel option
- High efficiency

Small Building Application Rooftop Unit (RTU) Heat Pump

- Similar footprint and accessibility to gas/electric RTUs
- No cold climate capability
 - 100% defrost (dual or auxiliary fuel required)

Operating condition	COP / Efficiency
High ambient heating	3.6
Low ambient heating	2.3
Dual fuel backup (natural gas)	0.81 (81% efficiency)
Auxiliary backup (electric resistance)	1

Pertinent Rebates, Tax Incentives & Funding or the Commercial Market

\$30.5B+

To boost U.S. production to support building electrification (incl. energy storage & heat pumps) **\$1B+**

In grants for local gov'ts to modernize commercial & residential buildings to meet energy codes

Tax Incentives

To expand tax deductions for Energy Efficiency & Inv. Tax Credits for Electrification (incl. thermal storage & heat pumps)

\$30B

To transition states & electric utilities to clean electricity

To decarbonize federal buildings through construction or retrofit \$50M+

To reduce air pollutants in schools

Many of these programs aren't created yet; Impacts to be determined

